双政策利率是我国货币政策框架长期以来的重要特征。在我国强化短期政策利率的背景下,科学地测度双政策利率各自的宏观经济效应与讨论政策利率体系的改进方向尤为重要。本文创新性地将消息推动的经济周期理论融入具有时变参数和随机波动率的向量自回归(TVP-SV-VAR)模型中,通过对双政策利率消息冲击进行正交化处理,深入研究了其净宏观经济效应。研究发现:首先,中期政策利率的正向消息冲击能有效降低产出缺口和物价水平,且这种影响日益增强;而短期政策利率的正向消息冲击却导致产出缺口和物价水平上升。其次,在金融危机、新冠疫情等重大经济冲击下,双政策利率消息冲击对产出缺口和物价的影响更为显著。最后,与传统的TVP-SV-VAR模型相比,双政策利率消息冲击的分析结果存在显著差异,进一步凸显了本研究的必要性。本文的创新方法不仅评估了政策效果,而且为完善中国的价格型货币政策框架提供了宝贵的经验指导。
Abstract
Dual policy rates have long been an important feature of China's monetary policy framework. Against the backdrop of a strengthened focus on short-term policy rates, it is crucial to accurately assess the distinct macroeconomic effects of each rate and to explore avenues for improving the policy rate system.This paper introduces an innovative approach by integrating a news-driven economic cycle theory into a time-varying parameter and stochastic volatility vector autoregression(TVP-SV-VAR) model.By orthogonalizing the news shocks of the dual policy rates, the study provides a detailed examination of their net macroeconomic impact.The results indicate that a positive news shock in the medium-term policy rate effectively reduces both the output gap and price level, with this effect intensifying over time, whereas a positive news shock in the short-term policy rate leads to an increase in both.Moreover, during significant economic shocks such as financial crises and the COVID-19 pandemic, the influence of these news shocks on the output gap and prices become even more pronounced.In comparison with the conventional TVP-SV-VAR model, the analysis of dual policy rates news shocks reveals marked differences, underscoring the necessity of this research.The proposed methodology not only evaluates policy effectiveness but also offers valuable empirical insights for enhancing China's price-based monetary policy framework.
关键词
双政策利率 /
消息冲击 /
TVP-SV-VAR模型
{{custom_keyword}} /
Key words
Dual policy rates /
News shocks /
TVP-SV-VAR model
{{custom_keyword}} /
中图分类号:
F822.0
F830.9
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 易纲.建设现代中央银行制度[J].中国金融,2022(24):9-11.
[2] 张杰.从经济增长的金融密码看建设金融强国之道[J].经济研究,2023(11):4-23.
[3] 郭豫媚, 戴赜, 彭俞超.中国货币政策利率传导效率研究:2008—2017[J].金融研究,2018(12):37-54.
[4] 战明华, 李欢.金融市场化进程是否改变了中国货币政策不同传导渠道的相对效应?[J].金融研究,2018(5):20-36.
[5] 陈创练, 郑挺国, 姚树洁.时变参数泰勒规则及央行货币政策取向研究[J].经济研究,2016(8):43-56.
[6] 林建浩, 王少林.中国价格型货币政策的系统性与非系统性时变效应研究[J].统计研究,2016(3):44-52.
[7] He D, Wang H.Dual-track Interest Rates and the Conduct of Monetary Policy in China[J].China Economic Review, 2012, 23(4): 928-947.
[8] Fernald J G, Spiegel M M, Swanson E T.Monetary Policy Effectiveness in China: Evidence from a FAVAR Model[J].Journal of International Money and Finance, 2014(49): 83-103.
[9] 王永钦, 吴娴.中国创新型货币政策如何发挥作用:抵押品渠道[J].经济研究,2019(12):86-101.
[10] 刘冲, 庞元晨, 刘莉亚.结构性货币政策、金融监管与利率传导效率——来自中国债券市场的证据[J].经济研究,2022(1):122-136.
[11] 郭晔, 房芳.新型货币政策担保品框架的绿色效应[J].金融研究,2021(1):91-110.
[12] 邓伟, 杨红霞, 刘冲.央行担保品政策如何支持实体经济?——基于商业信用的视角[J].管理世界,2024(2):86-103.
[13] 房芳, 郭晔.创新型货币政策能够提高企业的绿色投资水平吗?——来自中国上市企业的微观证据[J].国际金融研究,2023(8):87-96.
[14] 张勇, 李政军, 龚六堂.利率双轨制、金融改革与最优货币政策[J].经济研究,2014(10):19-32.
[15] 杨坤, 曹晖, 孙宁华.非正规金融、利率双轨制与信贷政策效果——基于新凯恩斯动态随机一般均衡模型的分析[J].管理世界,2015(5):41-51.
[16] Sims C.Interpreting the Macroeconomic Time Series Facts: The Effects of Monetary Policy[J].European Economic Review,1992, 36(5):975-1000.
[17] Bernanke B S, Bovian J, Eliasz P.Measuring the Effects of Monetary Policy: A Factor-augmented Vector Autoregressive (FAVAR) Approach[J].Quarterly Journal of Economics, 2005,120(1):387-422.
[18] Stock J H, Watson M W.Macroeconomic Forecasting Using Diffusion Indexes[J].Journal of Business Economics and Statistics, 2002, 20(2): 147-162.
[19] 王洋, 姜珂, 赵宣凯.中国货币政策价格之谜:信息不足抑或无效识别[J].财贸经济,2023(2):73-87.
[20] Canova F.Modelling and Forecasting Exchange Rates with a Bayesian Time-Varying Coefficient Model[J].Journal of Economic Dynamics and Control, 1993, 17(1-2): 233-261.
[21] Stock J H, Watson M W.Evidence on Structural Instability in Macroeconomic Time Series Relations[J].Journal of Business and Economic Statistics, 1996, 14(1): 11-30.
[22] Harvey A C, Ruiz E, Shephard N.Multivariate Stochastic Variance Models[J].Review of Economic Studies, 1994, 61(2): 247-264.
[23] Kim S, Shephard N, Chib S.Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models[J].Review of Economic Studies, 1998, 65(3): 361-393.
[24] Cogley T, Sargent T J.Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII US[J].Review of Economic Dynamics, 2005, 8(2): 262-302.
[25] Primiceri G E.Time Varying Structural Vector Autoregressions and Monetary Policy[J].The Review of Economic Studies, 2005, 72(3):821-852.
[26] 王少林, 林建浩.央行沟通的可信性与通货膨胀预期[J].统计研究,2017(10):54-65.
[27] 陈创练, 戴明晓.货币政策、杠杆周期与房地产市场价格波动[J].经济研究,2018(9):52-67.
[28] Nakajima J.Time-varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications[J].Monetary and Economic Studies, 2011, 29:107-142.
[29] Negro M D, Primiceri G E.Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum[J].The Review of Economic Studies, 2015,82(4):1342-1345.
[30] Carriero A, Clark T E, Marcellino M.Large Bayesian Vector Autoregressions with Stochastic Volatility and Non-conjugate Priors[J].Journal of Econometrics, 2019, 212(1):137-154.
[31] Koop G R, Leon-Gonzalez R, Strachan R W.On the Evolution of the Monetary Policy Transmission Mechanism[J].Journal of Economic Dynamics and Control, 2009, 33(4):997-1017.
[32] 吴化斌, 许志伟, 胡永刚,等.消息冲击下的财政政策及其宏观影响[J].管理世界,2011(9):26-39.
[33] 庄子罐, 贾红静, 刘鼎铭.货币政策的宏观经济效应研究:预期与未预期冲击视角[J].中国工业经济,2018(7):80-97.
[34] 王茜, 王曦.货币政策预期管理的优化策略研究[J].财贸经济,2021(2):67-85.
[35] Barsky R B, Sims E R.News Shocks and Business Cycles[J].Journal of Monetary Economics, 2011, 58(3): 273-289.
[36] Cascaldi-garcia D, Galvão A.News and Uncertainty Shocks[J].Journal of Money, Credit and Banking, 2021, 53(4):779-811.
[37] Uhlig H.What Are the Effects of Monetary Policy on Output? Results from an Agnostic Identification Procedure[J].Journal of Monetary Economics, 2005,52(2): 381-419.
[38] 杜群阳, 周方兴, 战明华.不确定性冲击下货币政策传导效率研究——基于理论与实证的分析[J].经济学动态,2024(1):12-31.
[39] 马理, 范伟.应对疫情冲击的货币政策调控机制研究[J].经济科学,2021(2):19-32.
[40] Nakamura E, Steinsson J.High-Frequency Identification of Monetary Non-Neutrality: The Information Effect[J].The Quarterly Journal of Economics,2018, 133(3):1283-1330.
[41] 隋建利, 刘碧莹.未预期货币政策非中性的混频识别:行动与语言的信息效应[J].世界经济,2020(11):176-200.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家社会科学基金一般项目“利率并轨背景下货币政策传导机制与央行政策取向研究”(项目编号:20BJL017)。
{{custom_fund}}