中国经济发展正处于百年变局之下,公共卫生事件等重大外生冲击引发了较大的经济不确定性,对宏观经济运行产生了深刻影响。鉴于此,本文以历次重大事件冲击为背景,提取不同事件时期下的经济波动率,并将这一冲击引入DSGE系统当中,全面探讨了不同类型的经济不确定性冲击对宏观经济和金融系统的影响,主要得出如下结论:第一,金融不确定性通常会引发最大的经济波动,而供给不确定性和需求不确定性的影响相对较弱,这是因为金融不确定性可以通过金融加速器效应放大经济波动。第二,当出现经济不确定性冲击时,金融系统在较短时间内就能回归至均衡水平,但实体经济的恢复则需较长时间。第三,金融摩擦机制能够放大不确定性冲击对金融系统的影响,而价格粘性机制则易于使经济陷入通货膨胀困境,此外,二者的联合作用会使经济长期陷入消费低迷状态。总体而言,应对重大事件冲击的关键在于做好事前应急预案,优化市场基础环境,一方面,在金融市场端要强化信息透明性,减小金融摩擦;另一方面,在实体经济端要充分发挥市场主体功能,弱化价格粘性效应。提高经济系统的自稳定性和培育强大的经济韧性是弱化各类重大不确定性冲击的根本路径。
Abstract
China's economy is now undergoing a major change in a century.The public health event and other major exogenous shocks have triggered typical economic uncertainties, which have a profound impact on macro-economy.Based on the background of momentous event shocks, this paper estimates different types of economic uncertainties in different crisis periods, then introduces uncertainty shocks into DSGE model, comprehensively discusses the impact of economic uncertainties on the macro-economy and financial system, and mainly draws the following conclusions: First, financial uncertainty shocks usually cause the largest economic fluctuations, while the impact of supply and demand uncertainty shocks is relatively weak, this is because financial uncertainty shocks can amplify economic fluctuations through financial accelerator effects. Second, when there is an economic uncertainty shock, the financial system can return to the equilibrium level in a relatively short time, but the recovery of the real economy takes longer time.Third, the financial friction can amplify the impact of economic uncertainty shocks in financial system, while the price stickiness is easy to cause the economy to fall into the dilemma of inflation.In addition, the combined effect of the two will cause the economy to fall into a long-term consumption downturn.In general, the key to deal with the momentous event shocks is to do preparations in advance.On the one hand, in the financial market, supervision should be strengthened, information transparency should be strengthened, so that financial friction can be reduced.On the other hand, as for the real economy, we should give full play to the function of market itself to weaken the price stickiness effect.Improving the self-stability of the economic system and cultivating strong economic resilience is the fundamental way to weaken the impact of all kinds of uncertainty shocks.
关键词
重大事件冲击 /
经济不确定性 /
宏观经济波动
{{custom_keyword}} /
Key words
Momentous event shocks /
Economic uncertainties /
Macro-economic fluctuation
{{custom_keyword}} /
中图分类号:
F015F832
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 高珂,孙瑞琪,黄琨,等.金融冲击、银行资产配置与异质性企业产出波动[J].中央财经大学学报,2022(1): 35-50.
[2] 邓创,吴超,赵珂.重大危机事件下的不确定性冲击、传导机制与政策协同应对[J].国际金融研究,2022(2): 22-33.
[3] Bloom N.Fluctuations in Uncertainty[J].Journal of Economic Perspectives, 2014, 28(2): 153-176.
[4] 章上峰,李荣丽,王玉颖.中国宏观经济不确定性的统计测度研究[J].统计与信息论坛,2015(6):14-19.
[5] 王义中,宋敏.宏观经济不确定性、资金需求与公司投资[J].经济研究,2014(2): 4-17.
[6] 邓创,吴超.中国经济、金融不确定性的交互影响动态与宏观经济效应分析[J].系统工程理论与实践,2021(7): 1625-1639.
[7] 李天宇.流动性管理下中国宏观审慎政策有效性研究[J].社会科学战线,2020(7): 54-66.
[8] 余杰,黄孝武.中国宏观经济不确定性的经济效应[J].中央财经大学学报,2020(12): 78-94.
[9] 陈选娟,杨刚,贾志敏.经济政策不确定性、展期风险与债券利差[J].国际金融研究,2022(9): 77-86.
[10] 刘金全,刘文轩.央行沟通与经济不确定性预期管理——基于大数据文本分析的研究[J].中央财经大学学报,2023(8): 31-41.
[11] Fernández-Villaverde J, Guerrón-Quintana P A.Uncertainty Shocks and Business Cycle Research[J].Review of Economic Dynamics, 2020, 37: S118-S146.
[12] Leeper E M, Walker T B.Fiscal Limits in Advanced Economies[J].Economic Papers: A Journal of Applied Economics and Policy, 2011, 30(1): 33-47.
[13] 孟宪春,张屹山,李天宇.中国经济‘脱实向虚’背景下最优货币政策规则研究[J].世界经济,2019(5): 27-48.
[14] Hong M G.Solving DSGE Models with a Nonlinear Moving Average[J].Journal of Economic Dynamics and Control, 2013, 37(12): 2643-2667.
[15] 彭安兴.结构性货币政策能兼顾稳增长和防通胀吗?——基于MIUP-DSGE模型[J].中央财经大学学报,2023(8): 91-102.
[16] 谢超峰.消费习惯、粘性价格与货币流通速度——基于NK模型的估计[J].南开经济研究,2015(3): 74-94.
[17] 余建干,吴冲锋.金融冲击、货币政策规则的选择与中国经济波动[J].系统工程理论与实践,2017(2): 273-287.
[18] 楚尔鸣,许先普.消费习惯偏好、政府支出扩张与产出效应[J].财贸经济,2013(8): 27-37,46.
[19] 陈昆亭,龚六堂.粘滞价格模型以及对中国经济的数值模拟——对基本RBC模型的改进[J].数量经济技术经济研究,2006(8): 106-117.
[20] 王博,李力,郝大鹏.货币政策不确定性、违约风险与宏观经济波动[J].经济研究,2019(3): 119-134.
[21] 朱军,李建强,张淑翠.财政整顿、‘双支柱’政策与最优政策选择[J].中国工业经济,2018(8): 24-41.
[22] 李建强,朱军,张淑翠.政府债务何去何从:中国财政整顿的逻辑与出路[J].管理世界,2020(7): 41-55.
[23] 徐宁,丁一兵,张男.利率管制、LPR与完全市场化下的货币政策传导机制:理论对比与实证检验[J].南方经济,2020(5): 34-48.
[24] 张成思,党超.基于双预期的前瞻性货币政策反应机制[J].金融研究,2017(9): 1-17.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家社会科学基金重大项目“健全目标优化、分工合理、高效协同的宏观经济治理体系的理论与实践研究”(项目编号:21ZDA042);中央高校基本科研业务费专项资金“中国经济周期测度的学理思辨与计量评价”(项目编号:2022-JCXK-36)。
{{custom_fund}}