制造业企业专业化分工会影响企业创新,且二者之间的关系受制于企业数字化转型程度。尽管以往研究成果已涉及专业化分工与企业创新间的关系,但现有相关文献缺乏探究专业化分工影响企业创新机制方面的成果。笔者基于交易成本理论和分工理论,利用2007—2020年中国A股制造业上市公司相关有效数据,借助多元线性回归方法,实证检验了专业化分工对企业创新的影响及其过程中企业数字化转型程度的调节作用。检验结果证实:专业化分工对企业创新投入有显著的负向影响,对企业创新产出有显著的正向影响;数字化转型对专业化分工与企业创新之间的关系具有调节作用,较高的企业数字化转型程度在专业化分工负向影响创新投入和正向影响创新产出的关系中均发挥强化作用。本研究通过实证检验制造业企业专业化分工影响企业创新的机制,拓展了交易成本等理论的应用范畴,丰富了专业化分工和企业创新方面的相关文献,为企业在专业化分工中推进创新活动提供了理论依据。
Abstract
The vertical disintegration in manufacturing enterprises affects enterprise innovation, and the relationship between these two is limited by the degree of digital transformation of enterprises.Although the relationship between vertical disintegration and enterprise innovation has been covered by previous research results, the investigation of the mechanism of specialization division of labor affecting enterprise innovation is still insufficient.Based on transaction cost theory and division of labor theory, the author empirically tested the impact of vertical disintegration on enterprise innovation and the moderating role of the degree of digital transformation of enterprises in this process by using data of Chinese A-share listed manufacturing companies from 2007 to 2020, after excluding cases such as missing data, using multiple linear regression.The test results confirm that: vertical disintegration has a significant negative effect on innovation input, but a significant positive effect on innovation output; digital transformation has a moderating effect on the relationship between vertical disintegration and enterprise innovation, and the higher degree of enterprise digital transformation has a strengthening effect on both negative innovation input and positive innovation output of vertical disintegration.This study expands the application of theories such as transaction cost, enriches the literature related to vertical disintegration and enterprise innovation, and provides a theoretical basis for enterprises to promote the innovation activities of vertical disintegration through the academic exploration of the mechanism of vertical disintegration affecting enterprise innovation in manufacturing enterprises.
关键词
专业化分工 /
创新投入 /
创新产出 /
数字化转型
{{custom_keyword}} /
Key words
Vertical disintegration /
Innovation input /
Innovation output /
Digital transformation
{{custom_keyword}} /
中图分类号:
F270.3
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 范子英,彭飞.“营改增”的减税效应和分工效应:基于产业互联的视角[J].经济研究,2017(2):82-95.
[2] 袁淳,肖土盛,耿春晓,盛誉.数字化转型与企业分工:专业化还是纵向一体化[J].中国工业经济,2021(9):137-155.
[3] 黄苹.不同活动类型技术创新单要素效率研究[J].科研管理,2015(11):64-70.
[4] 蒋志文,郑惠强.基于实证的“专精特新”企业培育路径及政策影响分析[J].中国软科学,2022(S1):63-70.
[5] Becker A,Hottenrott H,Mukherjee A.Division of Labor in R&D? Firm Size and Specialization in Corporate Research[J].Journal of Economic Behavior and Organization,2022,194:1-23.
[6] 戴魁早.垂直专业化对创新绩效的影响及行业差异——来自中国高技术产业的经验证据[J].科研管理,2013(10):42-49.
[7] 马淑琴,张友丰,陆立军.分工深化、知识积累与专业市场全球价值链嵌入——基于报酬递增视角的分析[J].经济体制改革,2021(4):111-116.
[8] Naghavi A,Ottaviano G.Offshoring and Product Innovation[J].Economic Theory,2009,38(3):517-532.
[9] Zhang Y C,Tong T W.How Vertical Integration Affects Firm Innovation:Quasi-experimental Evidence[J].Organization Science,2021,32(2):455-479.
[10] Murphy G,Siedschlag I.Determinants of R&D Offshoring:Firm-level Evidence from a Small Open Economy[J].Economia Politica,2018,35(2):529-553.
[11] 王璐,李晨阳.数字经济下的生产社会化与企业分工协作:演进与特性[J].北京行政学院学报,2022(1):84-94.
[12] 胡乐明,杨虎涛.产业发展战略选择的内在逻辑——一个连接演进的解析框架[J].经济研究,2022(6):45-63.
[13] 施炳展,李建桐.互联网是否促进了分工:来自中国制造业企业的证据[J].管理世界,2020(4):130-149.
[14] 张悦,梁巧转,范培华.网络嵌入性与创新绩效的Meta分析[J].科研管理,2016(11):80-88.
[15] 宋耘,王婕.网络特征和知识属性对企业创新绩效的影响[J].管理科学,2020(3):63-77.
[16] Devos E,Li H.Vertical Integration to Mitigate Internal Capital Market Inefficiencies[J].Journal of Corporate Finance,2021,69:101994.
[17] 林勇,张昊.开放式创新生态系统演化的微观机理及价值[J].研究与发展管理,2020(2):133-143.
[18] Seru A.Firm Boundaries Matter:Evidence from Conglomerates and R&D Activity[J].Journal of Financial Economics,2014,111(2):381-405.
[19] Ozbas O,Scharfstein D S.Evidence on the Dark Side of Internal Capital Markets[J].Review of Financial Studies,2010,23(2):581-599.
[20] 李晓华.产业组织的垂直解体与网络化[J].中国工业经济,2005(7):28-35.
[21] Wu L,Lou B,Hitt L.Data Analytics Supports Decentralized Innovation[J].Management Science,2019,65(10):4863-4877.
[22] Bloom N,Garicano L,Sadun R,Van Reenen J.The Distinct Effects of Information Technology and Communication Technology on Firm Organization[J].Management Science,2014,60(12):2859-2885.[23]Brynjolfsson E,McElheran K.The Rapid Adoption of Data-driven Decision-making[J].American Economic Review,2016,106(5):133-139.
[24] Pagani M,Pardo C.The Impact of Digital Technology on Relationships in a Business Network[J].Industrial Marketing Management,2017,67:185-192.
[25] 董松柯,刘希章,李娜.数字化转型是否降低企业研发操纵?[J].数量经济技术经济研究,2023(4):28-51.
[26] 张任之.数字技术与供应链效率:理论机制与经验证据[J].经济与管理研究,2022(5):60-76.
[27] 赵凯.R&D成本内生化及政府补贴政策效应研究——基于新经济地理框架[J].科学学与科学技术管理,2016(2):42-52.
[28] 谢康,夏正豪,肖静华.大数据成为现实生产要素的企业实现机制:产品创新视角[J].中国工业经济,2020(5):42-60.
[29] 陈武,陈建安,李燕萍.工业互联网平台:内涵、演化与赋能[J].经济管理,2022(5):189-208.
[30] 李柏洲,王丹.专利密集型企业原始创新知识搜寻作用机理[J].科学学研究,2022(7):1303-1313.
[31] 蔡呈伟,戚聿东.工业互联网对中国制造业的赋能路径研究[J].当代经济管理,2021(12):40-48.
[32] 李俊久,张朝帅.数字要素投入、专业化分工与中国制造业国际竞争力[J].国际经贸探索,2022(11):51-65.
[33] Goldfarb A,Tucker C.Digital Economics[J].Journal of Economic Literature,2019,57(1):3-43.
[34] 王君泽,宋小炯,杜洪涛.基于解释结构模型的我国工业互联网实施影响因素研究[J].中国软科学,2020(6):30-41.
[35] 蔡卫星,倪骁然,赵盼,杨亭亭.企业集团对创新产出的影响:来自制造业上市公司的经验证据[J].中国工业经济,2019(1):137-155.
[36] 佟岩,孙毓,王茜.交叉上市与企业创新——以A+H上市公司为例[J].科研管理,2022(6):121-131.
[37] Buzzell R D.Is Vertical Integration Profitable[J].Harvard Business Review,1983,61(1):92-102.
[38] 杨水利,陈娜,李雷.数字化转型与企业创新效率——来自中国制造业上市公司的经验证据[J].运筹与管理,2022(5):169-176.
[39] Gormley T A,Matsa D A.Common Errors:How to (and Not to) Control for Unobserved Heterogeneity[J].Review of Financial Studies,2014,27(2):617-661.
[40] 胡善成,张彦彦,周京奎.垂直专业化、研发效率与垄断势力[J].经济与管理研究,2021(6):106-123.
[41] 王旭,张晓宁,牛月微.“数据驱动”与“能力诅咒”:绿色创新战略升级导向下企业数字化转型的战略悖论[J].研究与发展管理,2022,34(4):51-65.
[42] 刘亚亚,曲婉,冯海红.中国大数据政策体系演化研究[J].科研管理,2019(5):13-23.
[43] 毛捷,曹婧,杨晨曦.营改增对企业创新行为的影响——机制分析与实证检验[J].税务研究,2020(7):12-19.
[44] 鲁晓东,连玉君.中国工业企业全要素生产率估计:1999—2007[J].经济学(季刊),2012(2):541-558.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
湖南省社会科学基金项目“基于网络编配理论的湖南省新兴优势产业链创新发展研究”(项目编号:20JD065)。
{{custom_fund}}