党的二十大指出,“着力推动高质量发展”,“促进高质量充分就业”,高质量发展和就业是全面建设社会主义现代化国家的重要组成部分。本文构建了一个多部门的代际交替动态一般均衡模型,分析人工智能对高质量发展和就业的影响。数值模拟发现,人工智能通过替代效应和创造效应非对称改变资本和劳动在不同部门要素边际产出,诱导要素跨部门流动促进产业转型升级。同时,人工智能将替代低技能劳动力,增加对高技能劳动力的需求,从而优化劳动力市场结构。同一行业之间,人工智能通过替代效应和创造效应促进智能企业转型升级。不同行业中,人工智能通过价格效应、岗位更迭效应和溢出效应促进关联企业转型升级。进一步研究发现,人工智能替代效应以激烈的方式从外部促进企业转型升级,而创造效应以温和的方式从内部促进企业实现转型升级。
Abstract
The 20th National Congress of the Party has emphasized the need to“vigorously promote high-quality development”and“facilitate high-quality and full employment”.High-quality development and employment constitute integral components of building a comprehensive socialist modernization in China. This paper constructs a multi-sector intergenerational dynamic general equilibrium model to analyze the impact of artificial intelligence on high-quality development and employment.Numerical simulations reveal that artificial intelligence induces asymmetric changes in capital and labor marginal output across different sectors through substitution and creation effects.These effects encourage factor reallocation across sectors, promoting industrial transformation and upgrading.Simultaneously, artificial intelligence tends to replace low-skilled labor while increasing the demand for high-skilled labor, optimizing the labor market structure.Within the same industry, artificial intelligence fosters transformation and upgrading of intelligent enterprises through substitution and creation effects.Across different industries, artificial intelligence facilitates transformation and upgrading of affiliated enterprises through price effects, job turnover effects, and spillover effects.Further investigation indicates that the substitution effects of artificial intelligence vigorously drive enterprise transformation and upgrading from external forces, while the creation effects gently facilitate internal transformation and upgrading within enterprises.
关键词
人工智能 /
高质量发展 /
产业转型升级
{{custom_keyword}} /
Key words
Artificial intelligence /
High quality development /
Industrial transformation and upgrading
{{custom_keyword}} /
中图分类号:
F015F24
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]逄锦聚,林岗,杨瑞龙,等.促进经济高质量发展笔谈[J].经济学动态,2019(7):3-19.
[2]郭凯明,王钰冰,龚六堂.劳动供给转变、有为政府作用与人工智能时代开启[J].管理世界,2023(6):1-21.
[3]陈彦斌,林晨,陈小亮.人工智能、老龄化与经济增长[J].经济研究,2019(7):47-63.
[4]黄旭.人工智能技术发展背景下收入不平等及政策:理论分析[J].中央财经大学学报,2021(7):83-91.
[5]董志强,黄旭.人工智能发展背景下公共政策的增长和不平等效应——一个动态一般均衡模型[J].学术研究,2021(2):92-99,178.
[6]黄旭,董志强.人工智能如何促进经济增长和社会福利提升?[J].中央财经大学学报,2019(11):76-85,128.
[7]Hémous D, Olsen M.The Rise of the Machines: Automation, Horizontal Innovation, and Income Inequality[J].American Economic Journal: Macroeconomics, 2022, 14(1): 179-223.
[8]黄旭.“机器换人”背景及政府补贴政策的影响[J].产业经济评论,2022a(4):81-101.
[9]黄旭.人工智能的三种效应:理论分析[J].技术经济,2022b(7):83-92.
[10]蔡跃洲,陈楠.新技术革命下人工智能与高质量增长、高质量就业[J].数量经济技术经济研究,2019(5):3-22.
[11]黄旭,许文立.公共政策如何应对人工智能引发的失业风险?[J].中央财经大学学报,2022(10):71-84,93.
[12]Aghion P, Jones B F, Jones C I.ArtificialIntelligence and Economic Growth[M]//The Economics of Artificial Intelligence: An Agenda.University of Chicago Press, 2018: 237-282.
[13]郭凯明.人工智能发展、产业结构转型升级与劳动收入份额变动[J].管理世界,2019(7):60-77,202-203.
[14]程文.人工智能、索洛悖论与高质量发展:通用目的技术扩散的视角[J].经济研究,2021(10):22-38.
[15]Autor D H, Dorn D, Katz L F, et al.The Fall of the Labor Share and the Rise of Superstar Firms[J].The Quarterly Journal of Economics, 2020, 135 (2): 645-709.
[16]董志强,黄旭.人工智能技术发展背景下的失业及政策:理论分析[J].社会科学战线,2019(12):76-84,281.
[17]Acemoglu D,Restrepo P.The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment[J]. American Economic Review, 2018, 108(6):1488-1542.
[18]Frey C B, Osborne M A.The Future of Employment: How Susceptible Are Jobs to Computerisation?[J].Technological Forecasting and Social Change, 2017, 114: 254-280.
[19]王林辉,钱圆圆,宋冬林,等.机器人应用的岗位转换效应及就业敏感性群体特征——来自微观个体层面的经验证据[J].经济研究,2023(7):69-85.
[20]孙早,侯玉琳.工业智能化如何重塑劳动力就业结构[J].中国工业经济,2019(5):61-79.
[21]Acemoglu D, Restrepo P.Robots and Jobs: Evidence from US Labor Markets[J].Journal of Political Economy, 2020, 128(6):2188-2244.
[22]尹志锋,曹爱家,郭家宝,等.基于专利数据的人工智能就业效应研究——来自中关村企业的微观证据[J].中国工业经济,2023(5):137-154.
[23]闫雪凌,朱博楷,马超.工业机器人使用与制造业就业:来自中国的证据[J].统计研究,2020(1):74-87.
[24]王永钦,董雯.机器人的兴起如何影响中国劳动力市场?——来自制造业上市公司的证据[J].经济研究,2020(10):159-175.
[25]孔高文,刘莎莎,孔东民.机器人与就业——基于行业与地区异质性的探索性分析[J].中国工业经济,2020(8):80-98.
[26]王文.数字经济时代下工业智能化促进了高质量就业吗[J].经济学家,2020(4):89-98.
[27]汪前元,魏守道,金山,等.工业智能化的就业效应研究——基于劳动者技能和性别的空间计量分析[J].管理世界,2022(10):110-126.
[28]Prettner K, Strulik H.Innovation,Automation, and Inequality: Policy Challenges in the Race Against the Machine[J].Journal of Monetary Economics, 2020, 116: 249-265.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家社科基金一般项目“新一代人工智能对劳动收入差距的影响与政策研究”(项目编号:23BJY134)。
{{custom_fund}}