商业银行系统性风险溢出效应研究:条件风险价值估计与系统性风险贡献度测量

何卓静, 周利国, 闫丽新

中央财经大学学报 ›› 2018, Vol. 0 ›› Issue (12) : 37-51.

PDF(2770 KB)
PDF(2770 KB)
中央财经大学学报 ›› 2018, Vol. 0 ›› Issue (12) : 37-51.
金融保险

商业银行系统性风险溢出效应研究:条件风险价值估计与系统性风险贡献度测量

  • 何卓静, 周利国, 闫丽新
作者信息 +

Study about the Systemic Risk Spillover Effects of Commercial Banks: Measuring of Conditional Value-at-risk and Systemic Risk Contribution

  • HE Zhuo-jing, ZHOU Li-guo, YAN Li-xin
Author information +
文章历史 +

摘要

笔者基于商业银行与金融体系间的非对称相关结构,结合变分模态分解(VMD)和时变Copula-CoVaR方法度量金融体系系统性风险溢出的长期和短期效应,利用我国14家上市商业银行的股票市场数据进行了实证研究。结果表明:大型商业银行的系统性风险溢出效应高于小型商业银行。商业银行系统性风险溢出效应在时间维度上存在差异。工商银行、建设银行和南京银行短期系统性风险溢出效应高于其他商业银行,而民生银行、北京银行和平安银行的长期系统性风险溢出效应排名前三。从总体上说,股份制商业银行对金融体系系统性风险的贡献度要高于国有控股商业银行和城市商业银行。当股票市场处于异常波动时期,国有控股商业银行系统性风险短期溢出效应显著。

Abstract

Based on the asymmetric correlation structure between commercial banks and the financial system, we combine the variational mode decomposition (VMD) method and time-varying Copula-CoVaR approach to analyze the short- and long-run risk spillovers between commercial banks and the financial system, using the stock market data of 14 listed commercial banks in China. We find some evidence in our empirical studies. Firstly, the systemic risk contributions of large commercial banks are higher than those of small commercial banks. Secondly, the systemic risk spillover effect of commercial banks differs in time dimension. Industrial and Commercial Bank of China, China Construction Bank and Bank of Nanjing have higher short-term systemic risk spillovers than other commercial banks, while China Minsheng Bank, Bank of Beijing and Ping An Bank rank the top three in terms of long-term systemic spillovers. Thirdly, joint-stock commercial banks contribute more to the systemic risks of the financial system than state-owned commercial banks and city commercial banks. When the stock market is in an abnormally volatile period, the short-term spillover effect of systemic risk of state-owned commercial banks is significant.

关键词

系统性风险 / 溢出效应 / 时变Copula-CoVaR / 变分模态分解(VMD) / 商业银行

Key words

Systemic risk / Spillover effect / Time-varying Copula-CoVaR / VMD / Commercial banks

引用本文

导出引用
何卓静, 周利国, 闫丽新. 商业银行系统性风险溢出效应研究:条件风险价值估计与系统性风险贡献度测量[J]. 中央财经大学学报, 2018, 0(12): 37-51
HE Zhuo-jing, ZHOU Li-guo, YAN Li-xin. Study about the Systemic Risk Spillover Effects of Commercial Banks: Measuring of Conditional Value-at-risk and Systemic Risk Contribution[J]. Journal of Central University of Finance & Economics, 2018, 0(12): 37-51
中图分类号: F832.33   

参考文献

[1] Gai P, Haldane A, Kapadia S. Complexity, Concentration and Contagion[J]. Journal of Monetary Economics, 2011, 58(5):453-470.
[2] Giglio S, Kelly B, Pruitt S. Systemic Risk and the Macroeconomy: An Empirical Evaluation[J]. Journal of Financial Economics, 2016, 119(3):457-471.
[3] Adrian T,Brunnermeier M K. CoVaR[J]. American Economic Review, 2016, 106(7):1705-1741.
[4] Girardi G, Ergün A T. Systemic Risk Measurement: Multivariate GARCH Estimation of CoVaR[J]. Journal of Banking and Finance, 2013, 37(8):3169-3180.
[5] López-Espinosa G, Moreno A, Rubia A, Valderrama L. Systemic Risk and Asymmetric Responses in the Financial Industry[J]. Journal of Banking and Finance, 2015, 58:471-485.
[6] Sedunov J. What is the Systemic Risk Exposure of Financial Institutions?[J]. Journal of Financial Stability, 2016 (24):71-87.
[7] Acharya V V, Pedersen L H, Philippon T, Richardsom M. Measuring Systemic Risk[J]. Review of Financial Studies, 2017, 30(1):2-47.
[8] Billio M, Getmansky M, Lo A W, Pelizzon L. Econometric Measures of Systemic Risk in the Finance and Insurance Sectors[J]. Journal of Financial Economics, 2012, 104(3):535-559.
[9] Huang X, Zhou H, Zhu H. A Framework for Assessing the Systemic Risk of Major Financial Institutions[J]. Journal of Banking and Finance, 2009, 33(11):2036-2049.
[10] Brownlees C, Engle R F. SRISK: A Conditional Capital Shortfall Measure of Systemic Risk[J]. Review of Financial Studies, 2017, 30(1):48-79.
[11] Gravelle T, Li F. Measuring Systemic Importance of Financial Institutions: An Extreme Value Theory Approach[J]. Journal of Banking and Finance, 2013, 37(7):2196-2209.
[12] 肖璞,刘轶,杨苏梅. 相互关联性、风险溢出与系统重要性银行识别[J]. 金融研究,2012(12):96-106.
[13] 沈悦,戴士伟,罗希. 中国金融业系统性风险溢出效应测度——基于GARCH-Copula-CoVaR模型的研究[J]. 当代经济科学,2014,36(6):30-38,123.
[14] 马麟. 我国商业银行系统性风险及溢出效应研究[J]. 宏观经济研究,2017(11):30-37,114.
[15] 白雪梅,石大龙. 中国金融体系的系统性风险度量[J]. 国际金融研究,2014(6):75-85.
[16] 陈忠阳,刘志洋. 国有大行商业银行系统性风险度真的高吗——来自中国上市商业银行股票收益率的证据[J]. 财贸经济,2013(9):57-66.
[17] 李志辉,樊莉. 中国商业银行系统性风险溢价实证研究[J]. 当代经济科学,2011,33(6):13-20,122.
[18] 陆静,胡晓红. 基于条件在险价值法的商业银行系统性风险研究[J]. 中国软科学,2014(4):25-42.
[19] Huang X, Zhou H, Zhu H. Assessing the Systemic Risk of a Heterogeneous Portfolio of Banks during the Financial Crisis[J]. Journal of Financial Stability, 2012, 8(3):193-205.
[20] López-Espinoza G, Moreno A, Rubia A, Valderrama L. Short-term Wholesale Funding and Systemic Risk: A global CoVaR approach[J]. Journal of Banking and Finance, 2012, 36(12):3150-3162.
[21] Laeven L, Ratnovski L, Tong H. Bank Size, Capital, and Systemic Risk: Some International Evidence[J]. Journal of Banking and Finance, 2016, 69:S25-34.
[22] Nitschka T. Developed Markets' Business Cycle Dynamics Time-variation in Emerging Markets' asset Returns[J]. Journal of Banking and Finance, 2014, 42:76-82.
[23] 邓创,徐曼. 中国的金融周期波动及其宏观经济效应的时变特征研究[J]. 数量经济技术经济研究,2014(9):75-91.
[24] 郑挺国,王霞. 中国经济周期的混频数据测度及实时分析[J]. 经济研究,2013(6):58-70.
[25] 何德旭,张捷. 经济周期与金融危机:金融加速器理论的现实解释[J]. 财经问题研究,2009(10):65-70.
[26] Hansen B E. Autoregressive Conditional Densityestimation[J]. International of Economic Review, 1994, 35(3):705-730.
[27] Dragomiretskiy K, Zosso D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Process, 2014, 62(3):531-544.
[28] Boyd S, Parikh N, Chu E. Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers[J]. Foundations and Trends in Machine Learning, 2010, 3(1):1-122.
[29] Mensi W, Hammoudeh S, Shahzad S J. H, Shahbaz M. Modelling Systemic Risk and Dependence Structure between Oil and Stock Markets Using a Variational Mode Decomposition-based Copula Method[J]. Journal of Banking and Finance, 2017 (75):258-279.
[30] Sklar A. Fonctions de Répartition àn Dimensions et Leurs Marges[J]. Publication de l'Institut de Statistique de L'Université de Paris, 1959, 8:229-231.
[31] Patton A J. Modelling Asymmetric Exchange Ratedependence[J]. International Economic Review, 2006, 47, (2):527-556.
[32] Abadie A. Bootstrap Tests for Distributional Treatment Effects in Instrumental Variablesmodels[J]. Journal of the American Statistical Association, 2002, 97(457):284-292.
[33] DeJonghe O. Back to the Basics in Banking? A Micro-analysis of Banking System Stability[J]. Journal of Financial Intermediation, 2010, 19(3):387-417.
[34] Vallascas F, Keasey F. Bank Resilience to Systemic Shocks and the Stability of Banking Systems: Small is Beautiful[J]. Journal of International Money and Finance, 2012, 31(6):1745-1776.
[35] Weiß G, Bostandzic D, Neumann S. What Factors Drive Systemic Risk during International Financial Crisis?[J]. Journal of Banking and Finance, 2014 (41):78-96.

基金

国家自然科学基金“商业银行物流金融信用风险的度量与防范研究:基于Copula理论视角的分析”(项目编号:71272235)。
PDF(2770 KB)

8

Accesses

0

Citation

Detail

段落导航
相关文章

/